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ABSTRACT
Vaccines could be the solution to the current SARS-CoV-2 outbreak. However, some studies have
shown that the immunological memory only lasts three months. Thus, it is imperative to develop
pharmacological treatments to cope with COVID-19. Here, the in silico approach by molecular docking,
dynamic simulations and quantum biochemistry revealed that ACE2-derived peptides strongly interact
with the SARS-CoV-2 RBD domain of spike glycoprotein (S-RBD). ACE2-Dev-PepI, ACE2-Dev-PepII,
ACE2-Dev-PepIII and ACE2-Dev-PepIV complexed with S-RBD provoked alterations in the 3D structure
of S-RBD, leading to disruption of the correct interaction with the ACE2 receptor, a pivotal step for
SARS-CoV-2 infection. This wrong interaction between S-RBD and ACE2 could inhibit the entry of
SARS-CoV-2 in cells, and thus virus replication and the establishment of COVID-19 disease. Therefore,
we suggest that ACE2-derived peptides can interfere with recognition of ACE2 in human cells by
SARS-CoV-2 in vivo. Bioinformatic prediction showed that these peptides have no toxicity or allergenic
potential. By using ACE2-derived peptides against SARS-CoV-2, this study points to opportunities for
further in vivo research on these peptides, seeking to discover new drugs and entirely new perspec-
tives to treat COVID-19.

ARTICLE HISTORY
Received 13 October 2020
Accepted 29 December 2020

KEYWORDS
SARS-CoV-2 RBD; COVID-19;
ACE2 receptor; ACE2-
derived peptides

1. Introduction

Coronaviruses (CoVs) are enveloped and pleomorphic viruses
belonging to the Coronaviridae family. They share a typical
morphology with the non-segmented positive single-stranded
RNA genome, estimated to have length of 30Kb (Burrell et al.,
2017; Peiris, 2012). The human-to-human spread of the corona-
viruses is mainly by nose and mouth secretion droplets. These
viruses cause disease that ranges from mild cold symptoms to
atypically severe pneumonia, with many complications, resulting
in death (Burrell et al., 2017).

The current pandemic caused by the severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) has claimed many
lives and threatened thousands worldwide. Coronavirus dis-
ease 2019 (COVID-19) is less lethal and by far more transmis-
sible than the diseases caused by the viruses involved in
other recent outbreaks, such as in 2002 by severe acute
respiratory syndrome coronavirus (SARS-CoV) and Middle
East respiratory syndrome coronavirus (MERS-CoV). A way to
measure that is the case fatality rate (CRF) of each outbreak.
The CRF of SARS-CoV, MERS-CoV and SARS-CoV-2 is, respect-
ively, of 9.7, 34 and 1%, which indicates that SARS-CoV-2 is
not one of the worst coronaviruses. However, its higher
transmissibility has resulted in 10 million of infected people

with 500 000 deaths, by far a larger number compared to
other outbreaks (Andersen et al., 2020; Li et al., 2020; Song
et al., 2019).

SARS-CoV-2 is close to SARS-CoV-1, sharing similarities
accounting nearly 80% in the genome sequence.
Additionally, both coronaviruses employ the same receptor-
binding domain (RBD) in the spike glycoprotein (S protein)
to interact with human angiotensin-converting enzyme 2
(ACE2) of the host cell to start the infection. The virus takes
control of the cellular machinery to synthesize its own gen-
ome and proteins. Despite similarities, the SARS-CoV-2 S pro-
tein has accumulated mutations, leading to modifications in
the RBD region that enhance its affinity for human ACE2 20-
fold compared to SARS-CoV S protein, resulting in faster
transmission from human to human (Andersen et al., 2020;
Walls et al., 2020; Yuan et al., 2017).

Despite the similarities, it is important to highlight the dif-
ferences between SARS-CoV-1 and SARS-CoV-2 receptor rec-
ognition as they are involved in virus transmissibility,
infectivity and pathology. It is known that the SARS-CoV-2
RBD has a higher ACE2-binding affinity than SARS-CoV-1, a
characteristic which could lead to a more efficient cell entry
and transmissibility (Walls et al., 2020; Yan et al., 2020). In
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contrast, ACE2 affinity toward the entire SARS-CoV-2 S pro-
tein is lower than that of SARS-CoV entire S protein suggest-
ing that SARS-CoV-2 RBD, besides being strongest, is
probably less exposed than SARS-CoV RBD (Andersen et al.,
2020; Song et al., 2019; Walls et al., 2020; Yan et al., 2020;
Yuan et al., 2017). In addition, SARS-CoV-2 S protein also held
substitution D614G during the coronavirus disease 2019
(COVID-19) pandemic (Sheffield COVID-19 Genomics Group,
2020). An elegant experiment using the cryoelectron micros-
copy (cryo-EM) revealed that the change from D614 to G614
eliminates the requirements of side-chain hydrogen bond,
increasing mainchain flexibility and altering interactions, and
modulates glycosylation enhancing the cell entry, infectivity,
transmissibility, stability of virions and high viral loads in the
airways (Sheffield COVID-19 Genomics Group, 2020; Wrapp
et al., 2020). Besides these differences, a new feature is the
high nanomechanical stability of the SARS-CoV-2 S-ACE2
interaction compared to SARS-CoV-1 (Moreira et al., 2020).
Moreira et al. (2020) revealed that high mechanical stability
in the SARS-CoV-2 S-ACE2 has several biological implications
such as cell recognition, viral attachment, fusion and entry.
Thus, mechanical stability might play a role in the increasing
spread of COVID-19 (Moreira et al., 2020).

Still regarding the importance of S-ACE2 interaction for
SARS-CoV-2 cell entry, there recently have been reported
that mutations far from RBD could affect the S-ACE2 inter-
action (Qiao & Olvera de la Cruz, 2020). For example, Qiao
and Olvera de la Cruz (2020) reported mutations non-RBD
sited, but altering the polybasic cleavage could result in 34%
of the S-RBD strength of interaction.Q2 This result suggests the
role of polybasic cleavage in enhancement of S-ACE2 inter-
action (Qiao & Olvera de la Cruz, 2020).

Given the importance of the S-ACE2 interaction to COVID-
19 establishment, many studies have focused on finding
drugs (either already available or new ones) that can inter-
fere with this interaction, making S protein a promising tar-
get in silico assays. Other groups have been investigating
existing drugs used to treat other viral infections, in a pro-
cess called repositioning or repurposing, but without success
(Calligari et al., 2020). Nevertheless, computational screening
is an exciting approach to develop new drugs faster and
more precisely. Therefore, many research groups are employ-
ing molecular docking (MD) and molecular dynamic simula-
tion (MDS) to find new molecules targeting the SARS-CoV-2 S
protein (Calligari et al., 2020; Souza et al., 2020).

Recently, our research group performed MD and MDS stud-
ies using eight synthetic antimicrobial peptides (Mo-CBP3-PepI,
Mo-CBP3-PepII, Mo-CBP3-PepIII, RcAlb-PepI, RcAlb-PepII, RcAlb-
PepIII, PEPGAT and PEPKAA) to target the SARS-CoV-2S glyco-
protein (Souza et al., 2020). Of those, Mo-CBP3-PepII and
PEPKAA strongly interacted with the SARS-COV-2 S protein,
changing its native conformation and topology, leading to
wrong interaction with ACE2 (Souza et al., 2020).

The most crucial feature of the SARS-CoV-2 S protein is
the high affinity of the RBD domain to the human ACE2
receptor, leading to higher levels of infection compared to
SARS-CoV and MERS-CoV. Based on that, in this study, we
employed the sequence to design antiviral peptides

targeting the SARS-CoV-2 S protein RBD domain (S-RBD).
Altogether, molecular docking, dynamic simulations and
quantum biochemical analyses revealed that all peptides
strongly bind to the RBD domain of SARS-CoV-2 S protein.
Through this binding, the peptides can stop the correct cross
talk between the cell and SARS-CoV-2, which is a critical step
in the viral infection. Therefore, the inhibition or induction of
incorrect interaction of the RBD domain and the human
ACE2 receptor could be a potentially valuable strategy to
combat COVID-19 caused by SARS-CoV-2.

2. Methodology

2.1. Design of peptides

The design of peptides followed the pipeline produced by
Souza et al. (2020). The protein sequence chosen was angioten-
sin-converting enzyme 2 from Homo sapiens (ACE2), freely avail-
able in the NCBI database (https://www.ncbi.nlm.nih.gov/)
under accession number Q9BYF1. The server used for the
design was the AVPpred server (http://crdd.osdd.net/servers/
avppred/) according to Thakur et al. (2012). First, the sequence
of ACE2 was fractioned using AVPpred to produce peptides
with chain lengths of 10, 15 and 20 amino acid residues. Then,
all the peptides were run in AVPpred to find potential antiviral
peptides. The AVPpred algorithm employs three criteria to
select peptides: (1) alignment model; (2) composition model;
and (3) physicochemical model. Based on those, the server clas-
sifies the sequences as AVP to potential antiviral peptides and
non-AVP to non-potential antiviral peptides.

After the design, the best sequences selected by AVPpred
were also run in the iAMPpred tool (http://cabgrid.res.
in:8080/amppred/) (Meher et al., 2016) to calculate the prob-
ability of the sequences selected by AVPpred to be antiviral.
The best sequences based on antiviral potential prediction
were selected and characterized by physicochemical and bio-
logical properties using the iAMPpred tool.

The PEPFold server (https://bioserv.rpbs.univ-paris-diderot.fr/
services/PEP-FOLD3/), a widely used computational tool to pre-
dict three-dimensional (3D) structures of linear peptides between
5 and 50 amino acids (Shen et al., 2014), was employed to build
the 3D structure of ACE-2-derived peptides. The Pymol program
was employed to evaluate the peptides’ 3D structures and their
interaction with the ACE2 human protein.

2.2. Molecular docking (MD) assays

FRODOCK 3.12 (http://frodock.chaconlab.org/) (Ram�ırez-
Aportela et al., 2016), one of the best servers for peptide–-
protein interaction, was used to perform all blind molecular
docking assays. The peptides with the highest potential were
chosen based on the docking score and repetition of poses
in the output.

2.3. Molecular dynamic simulation

The complexes generated by the molecular docking tests
were minimized and balanced to stabilize them before the
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molecular dynamic assays. The force field of all OPLS-AA/L
atoms (Moal & Bates, 2010; Robertson et al., 2015) was used
to perform the topology, after which a 2-nm cubic box was
created. Then, the SPC/E model of water was used for solv-
ation of the box, the systems were neutralized, and the
Naþ e Cl- ions were added at a concentration of 0.15M. The
minimization was performed until it reached negative poten-
tial energy and the lower maximum force of 1000 kJ
mol�1nm�1.Q3 The pressure and temperature balance was per-
formed to 100 ps. Subsequently, molecular dynamic simula-
tions were performed for 100 ns, and the resulting structures
were used for the further analyses.

2.4. Interface analysis of the complexes formed between
S-RBD and the studied peptides

The protein interactions calculator (PIC) server was used to
analyze the interface interactions of the complexes. The PIC
server (http://pic.mbu.iisc.ernet.in/) also determines the
accessible surface area and distance of a residue from the
protein’s surface based on analysis of a set of 3 D structure
coordinates. The PyMOL software, a molecular graphics tool
widely used for three-dimensional visualization of molecules,
was used to generate 3D figures and perform RMSD calcula-
tions. The Ligplot software (Laskowski & Swindells, 2011) was
used to generate 2D figures with the respective representa-
tions of hydrophobic interactions and hydrogen bonds.

2.5. Quantum biochemistry calculation

This was performed according to a protocol established pre-
viously (Zhang & Zhang, 2003). Molecular fractionation with
conjugate caps (MFCC) was carried out to calculate the full
quantum mechanical interaction energies between two pairs
of specific amino acid residues (Ri and Rj) involving the
studied peptides and SARS-CoV-2 Mpro, as follows, based on
the work of Amaral et al. (2020):

E Ri � Rjð Þ ¼ E Ci�1RiCiþ1 þ Cj�1RjCjþ1ð Þ�E Ci�1RiCiþ1 þ Cj�1Cjþ1ð Þ
�E Ci�1Ciþ1 þ Cj�1RjCjþ1ð Þ þ E Ci�1Ciþ1 þ Cj�1Cjþ1ð Þ

where E(Ci-1 Ri Ciþ1 þ Cj-1 Rj Cjþ1), the first term of the equa-
tion, is the total energy of the system formed by the resi-
dues Ri and Rj correctly capped; E(Ci-1 Ri Ciþ1 þ Cj-1 Cjþ1),
the second term, is the total energy of the system formed by
the capped residue Ri and the caps of the residue Rj; the
third term, E(Ci-1 C iþ1 þ Cj-1 Rj Cjþ1), represents the total
energy of the system formed by the capped residue Rj and
the caps of the residue Ri; and the last term, E(Ci-1Ciþ1 þ Cj-1
Cjþ1), accounts for the system’s total energy, formed by the
caps of both residues Ri and Rj. The caps Ci-1(Ciþ1) and Cj-
1(Cjþ1) are made from the residues covalently bound to the
amine (carboxyl) groups of Ri and Rj. In the MFCC method
used, all interaction between amino acid residues of the
studied peptides and SARS-CoV-2 Mpro separated from each
other within an 8Å range were calculated, considering a
dielectric function approach of 40 (E¼ 40) for all interactions.
The structural files (PDB format) obtained after molecular

dynamic simulation and MFCC were used as inputs for dens-
ity functional theory (DFT) calculations with DMOL3

(Delley, 2000).

3. Results

3.1. ACE2-derived peptide design

The AVPpred was set up to use the ACE2 sequence to pro-
duce peptides with 10, 15 and 20 amino acid residues. There
were 100, 80 and 79 peptides generated, with 10, 15 and 20
amino acid residues, respectively, for a total of 259 peptides
(Supplementary Tables S1–S3). Of those, AVPpred selected
four peptides with antiviral potential, which were named
ACE2-Dev-PepI, ACE2-Dev-PepII, ACE2-Dev-PepIII and ACE2-
Dev-PepIV (Table 1).

As summarized in Table 1, all peptides were cationic, with
positive charges ranging from þ1 to þ3, hydrophobic ratio
from 45 to 60% and calculated molecular mass ranging from
1802.16 to 2587.14. Regarding biological properties, the
iAMPpred tool revealed antiviral potentials of 80, 75, 63 and
35, respectively, for ACE2-Dev-PepI, ACE2-Dev-PepII, ACE2-
Dev-PepIII and ACE2-Dev-PepIV (Table 2), corroborating the
analysis of AVPpred. The in silico analyses revealed that all
peptides had no hemolytic, allergenic or toxic potential
(Table 2). This is interesting because designing peptides from
the ACE2 human receptor can reduce any collateral effect.

In silico analyses also revealed that all peptides possibly
interacted with DNA and RNA (Table 2). The interaction with
RNA is particularly interesting because SARS-CoV-2 and other
coronaviruses have RNA as genetic material. Looking forward
to clinical application, we tested the resistance of these pep-
tides in the intestinal-like environment. ACE2-Dev-PepIII pre-
sented a half-life of 0.021 s, indicating low stability, which
means that enzymes promptly digest it. ACE2-Dev-PepIV
showed normal stability, as indicated by the half-life of
0.614 s. ACE2-Dev-PepI and ACE2-Dev-PepII presented high
stability, with half-life values of 3.461 and 1.669 s, respect-
ively (Table 2). These values indicate the possibility of oral
administration of the last two peptides.

The PEPFold server predicted that all ACE2-dev peptides
contain long helices as secondary structures (Supplementary
Figure S1). The Ramachandran plot (Table 1) revealed 98%,
99%, 95% and 99% of favorable regions for helix formation,
respectively, for ACE2-Dev-PepI, ACE2-Dev-PepII, ACE2-Dev-
PepIII and ACE2-Dev-PepIV (Table 1).

3.2. Molecular docking and dynamic simulations
revealed interaction and stabilization between the
ACE2-derived peptides and S-RBD

Given the large size of the entire SARS-CoV-2 S protein, many
research groups have chosen to perform molecular docking
and dynamic simulations using only the RBD structure
(Amaral et al., 2020; Delley, 2000; Wu et al., 2020; Zhang &
Zhang, 2003). Here, we followed the same approach.
Molecular docking analyses showed that all ACE2-derived
peptides interacted with S-RBD in the same region, with
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different scores, as revealed by the FRODDOCK server (Figure
1). The peptides ACE2-Dev-PepI, ACE2-Dev-PepII, ACE2-Dev-
PepIII, and ACE2-Dev-PepIV presented scores of 3003.43,
2909.40, 2829.25, and 3251.67 kj.mol�1, respectively.

Molecular dynamic simulation showed the stabilization of
the complexes formed by ACE2-Dev-PepI, ACE2-Dev-PepII,
ACE2-Dev-PepIII, and ACE2-Dev-PepIV with S-RBD after assay
of 30 ns, remaining stable up to 100 ns, with RMSD variations
below 1Å after 30 ns (Figure 2). The stable conformation
obtained from each MD simulation was used to perform all
further analyses.

3.3. Interaction between S-RBD and ACE2-Dev-PepI

The most relevant interactions among the amino acid residues
from S-RBD and ACE2-Dev-PepI were by: Tyr489, Tyr473, Tyr489,
Phe456, Ala475, Tyr489, Leu455, Lys458, Tyr489, and Ala475 of RBD
with Phe14, Trp15, Trp11, Trp15, Phe14, Trp15, Trp11, Trp15, Met10,\
and Trp15 of ACE2-Dev-PepI. The interaction energies of inter-
action were, respectively, �7.40, �7.22, �6.65, �5.54, �5.41,
�4.57, �3.11, �2.90, �2.86 and �2.72 kcal.mol�1, with distan-
ces of 1.69, 1.76, 2.63, 2.54, 2.17, 2.40, 2.26, 4.70, 2.04 and
2.65Å, respectively. All existing interactions up to a distance of
8Å are reported in Supplementary Table S4.

The complex ACE2-Dev-PepI::S-RBD is supported by many
interactions, such as hydrophobic and aromatic–aromatic
interactions, along with hydrogen bonds (Figure 3(A,B,D)).

The hydrophobic interactions were with residues Tyr489,
Leu455, Tyr489, Ala475, Tyr489, Phe456, Tyr473, and Tyr489 of S-
RBD with Met10, Trp11, Trp11, Phe14, Phe14, Trp15, Trp15 and
Trp15 of ACE2-Dev-PepI (Figure 3(B,D)). The hydrogen bonds
occurred between residues Phe489 and Tyr489 of S-RBD and
residues Met10 and Phe14 of ACE2-Dev-PepI (Figure 3(A,B,D)).
The aromatic–aromatic interactions were formed between
residues Tyr489 and Phe456 of S-RBD and residues Trp11 and
Trp15 of ACE2-Dev-PepI (Figure 3(A,D).

Met10, Trp11, Phe14 and Trp15 were the most relevant
amino acid residues of ACE2-Dev-PepI in the interaction with
S-RBD, with respective interaction energies of �6.78, �15.40,
�17.24 and �23.81 kcal.mol�1 (Figure 3(C)).

3.4. Interaction of S-RBD with ACE2-Dev-PepII

Regarding the complex ACE2-Dev-PepII::S-RBD, interactions
occurred between residues Arg403, Glu484, Leu492, Tyr473, Gln493,
Phe456, Leu455, Tyr505, Tyr489, Leu455 and Phe490 of S- RBD, and
residues Phe15, Lys9, Lys9, Phe5, Lys9, Phe5, Val8, Phe15, Leu6,
Lys9 and Lys9 of ACE2-Dev-PepII. The interaction energies of
those interactions were, respectively, �13.81, �11.00, �5.14,
�4.98, �4.61, �4.34, �4.23, �3.91, �3.61, �3.21 and
�2.93 kcal.mol�1 with distances of 1.63, 1.57, 2.18, 2.39, 2.85,
2.57, 2.39, 2.33, 2.31, 2.35 and 2.15Å. The ACE2-Dev-PepII::S-
RBD complex presented a repulsive interaction between Arg403

of S-RBD and Leu14 of ACE2-Dev-PepII, with interaction energy
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Table 1. Physicochemical properties of the ACE2-derived peptides.

Properties/peptides ACE2-Dev-Pep-I ACE2-Dev-Pep-II ACE2-Dev-Pep-III ACE2-Dev-Pep-IV

Sequence CLPAHLLGDMWGRFW MRQYFLKVKNQMILF PFTYMLEKWRWMVFKGEIPK CLPAHLLGDMWGRFWTNLYS
apI 6.7 10.3 9.5 6.3
bCalculated molecular mass (Da) 1802.16 1959.45 2587.14 2380.78
bHydrophobic ratio (%) 60 53 45 50
bNet charge 11 þ3 þ2 þ1
cRamachandran plot (%) 98 99 95 99
dTm 0.470 0.335 0.223 0.537
dsOPEP –32.2 –29.49 –48.60 –46.57
aCalculated by using the ProtParam tool (https://web.expasy.org/protparam/protpar-ref.html).
bData generated by the antimicrobial peptide database (APD, http://aps.unmc.edu/AP/).
cCalculated by using the program Rampage (http://mordred.bioc.cam.ac.uk/�rapper/rampage.php).
dCalculated by using the PepFOLD 3.0 server (http://mobyle.rpbs.univ-paris-diderot.fr/cgi-bin/portal.py#forms::PEP-FOLD).

Table 2. ACE2-derived peptide properties obtained by bioinformatic analyses.

Properties/peptides ACE2-Dev-Pep-I ACE2-Dev-Pep-II ACE2-Dev-Pep-III ACE2-Dev-Pep-IV
aAllergic potential No No No No
bHemolytic potential (%) 0 0 1 0
cToxic potential Non-toxic Non-toxic Non-toxic Non-toxic
dAntiviral prediction Yes Yes Yes Yes
eAntiviral potential (%) 80 75 63 35
fDNA binding Yes Yes Yes Yes
gRNA binding Yes Yes Yes Yes
hHalf-life 3.461 1.669 0.021 0.614
iStability High High Low Normal
aThe allergic potential was calculated using the antigenic prediction tool (http://imed.med.ucm.es/Tools/antigenic.pl).
bThe hemolytic potential was calculated by the HemoPI tool (http://crdd.osdd.net/raghava/hemopi/submitfreq.php?ran=44366).
cThe toxin potential was calculated using ToxinPred (http://crdd.osdd.net/raghava/toxinpred/design.php).
dThe antiviral potential was calculated using the AVpred (http://crdd.osdd.net/servers/avppred/).
eThe antiviral potential was calculated using the iAMPpred tool (http://cabgrid.res.in:8080/amppred/).
fThe DNA-binding potential was assessed by using DNAbinder (http://crdd.osdd.net/cgibin/dnabinder/valid1.pl).
gThe RNA-binding potential was assessed by using RNApred (http://crdd.osdd.net/raghava/rnapred/submit.html).
hThe half-life in seconds was calculated using the half-life prediction tool (http://crdd.osdd.net/raghava/hlp/help.html), which pre-
dicts the proteolytic activity in the intestinal-like environment.

iStability was calculated using the half-life prediction tool (http://crdd.osdd.net/raghava/hlp/help.html). Half-life < 0.1 s means low
stability; half-life from 0.1 to 1.0 s means normal stability; and half-life > 1.0 s means high stability.
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of þ1.47 kcal.mol�1 and distance of 5.09Å.Supplementary Table
S5 summarizes all interactions between ACE2-Dev-PepII and
SARS-CoV-2 RBD up to a distance of 8Å.

The interaction between ACE2-Dev-PepII and S-RBD
occurred through hydrophobic, ionic, aromatic-aromatic, cati-
on–pi and hydrogen bonds (Figure 4(A–C)). Tyr489, Phe456,
Phe456, Tyr473, Ala475, Ala475, Tyr489, Leu455, Phe456, Pro491,
Tyr453, Leu455 and Tyr505 of S-RBD had hydrophobic interac-
tions with residues Met1, Tyr4, Phe5, Phe5, Phe5, Leu6, Leu6,
Val8, Val8, Val8, Met12, Met12, Phe15 of ACE2-Dev-PepII pep-
tide (Figure 4(B,C)). Hydrogen bonds occurred between resi-
dues Phe490, Leu492, Glu484 and Tyr453of S-RBD and residues
Lys9, Lys9, Lys9 and Met12 of ACE2-Dev-PepII (Figure 4(A–C)).

Ionic interaction occurred between the Glu484 residue of
S-RBD and Lys9 residue of ACE2-Dev-PepII. Four cation–pi
interactions happened between residues Lys458, Arg403,

Tyr489 and Phe490 of S-RBD and residues Phe5, Phe15, Lys9

and Lys9of ACE2-Dev-PepII (Figure 4(C)). Finally, the Phe456,
Phe456, Tyr473 and Tyr505residues of S-RBD had aromatic–aro-
matic interactions with the residues Tyr4, Phe5, Phe5 and
Phe15 of ACE2-Dev-PepII (Figure 4(C)).

The most relevant amino acid residues of ACE2-Dev-PepII
that interacted with S-RBD were Phe5, Leu6, Val8, Lys9,
Met12 and Phe15 with the interaction energies of �16.11,
�12.78, �9.23, �31.58, �5.95 and �20.79 kcal.mol�1,
respectively (Figure 4(D)).

3.5. Interaction between S-RBD and ACE2-Dev-PepIII

In the complex formed between ACE2-Dev-PepIII::S-RBD, the
main interactions were by residues Lys417, Arg408, Tyr453,
Glu406, Tyr489, Leu455, Gln493, Gln493, Gln493 and Phe456 of S-
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Figure 1. Molecular docking revealed that peptides derived from ACE2 human protein can interact with SARS-CoV-2 RBD. The target SARS-CoV-2 RBD is rep-
resented in cartoon yellow and ACE2-Dev-PepI in red (A), ACE2-Dev-PepII in green (B), ACE2-Dev-PepIII in black (C) and ACE2-Dev-PepIV in blue (D).
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RBD with residues Glu7, Phe2, Arg10, Arg10, Phe14, Phe14, Trp9,
Val13, Arg10 and Phe14 of ACE2-Dev-PepIII. The interaction
energies were, respectively, �11.04, �8.78, �5.04, �4.88,
�3.90, �3.81, �3.34, �3.24, �3.22 and �3.04 kcal.mol�1 and
distances of 1.59, 2.53, 1.89, 4.01, 2.48, 2.23, 2.01, 2.66, 2.51,
2.62 Å, respectively. Repulsive interactions occurred between
residues Glu406 and Arg403 of SARS-CoV-2 RBD and residues
Glu7 and Arg10 of ACE2-Dev-PepIII, with interaction energies
of þ1.42 and þ1.98 kcal.mol�1, respectively. All interactions
between ACE2-Dev-PepIII and SARS-CoV-2 RBD up to a dis-
tance of 8 Å are reported in Supplementary Table S6.

ACE2-Dev-PepIII interacted with S-RBD through hydropho-
bic, ionic, aromatic-aromatic, cation–pi interactions and
hydrogen bonds. The residues Tyr505, Tyr505, Leu455, Leu455,
Phe456 and Tyr489 of S-RBD were involved in hydrophobic
interactions with Met5, Trp9, Val13, Phe14, Phe14 and Phe14 of
ACE2-Dev-PepIII (Figure 5(B,D)). Tyr505, Phe456 and Tyr489
of S-RBD, and Trp9, Phe14 and Phe14 of ACE2-Dev-PepIII
(Figure 5(A,D)) drove aromatic–aromatic interactions.
Hydrogen bonds occurred between Gln493, Gln493, Tyr453 and
Lys417 residues of S-RBD and the Trp9, Trp9, Arg10 and Glu7

residues of ACE2-Dev-PepIII (Figure 5(A,B,D)).
Phe2, Leu6, Glu7, Trp9, Arg10, Val13, Phe14 and Lys15 were

the main amino acid residues of ACE2-Dev-PepIII that inter-
acted with S-RBD, with interaction energy values of �13.98,
�6.13, �11.52, �9.74, �14.52, �7.07, �13.85 and
�4.38 kcal.mol�1.

3.6. Interaction between S-RBD and ACE2-Dev-PepIV

The main interactions between amino acid residues were
driven by Tyr449, Gln493, Tyr489, Phe490, Leu455, Gln498, Gln498,
Phe456, Phe456, Phe456 and Leu455 of S-RBD and residues
Leu18, Trp11, Leu7, Trp11, Leu6, Leu18, Asn17, Leu7, Pro3, Leu6

and Leu7 of ACE2-Dev-PepIV. The interaction energies were
�5.27, �5.07, �4.99, �4.14, �4.05, �3.91, �3.85, �3.82,
�3.40, �3.04 and �3.03 kcal.mol�1, with distances of 2.22,
2.92, 2.18, 2.25, 2.25, 3.43, 1.71, 2.22, 2.51, 2.12 and 2.22 Å,
respectively. The repulsive interaction was between the resi-
due Gly485 of S-RBD and Leu7 of ACE2-Dev-PepIV, with the
interaction energy of þ0.54 kcal.mol�1. All interactions
between ACE2-Dev-PepIV and SARS-CoV-2 RBD up to a dis-
tance of 8 Å are reported in Supplementary Table S7.
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Figure 2. Molecular dynamic simulations obtaining stable structures. The
complexes formed between the four peptides derived from ACE2 and SARS-
CoV-2 were examined by molecular dynamics, and stable structures were
obtained after 100 ns. Each RMSD variation demonstrated stability during the
simulation after 30 ns.

Figure 3. Energies and interaction between SARS-CoV-2 RBD (yellow) and ACE2-Dev-PepI (red). A and B represent the 3D interactions and 2D interactions,
respectively. C represents the individual energy contribution of each amino acid residue of ACE2-Dev-PepI, and D denotes all interactions between SARS-CoV-2
RBD and ACE2-Dev-PepI.
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Hydrophobic, and aromatic–aromatic interactions along
with hydrogen bonds are the interactions that stabilize the
ACE2-Dev-PepIV::S-RBD complex. Hydrophobic interactions
occurred between ACE2-Dev-PepIV and residues Phe456,
Phe456, Ala475, Tyr489, Tyr489, Tyr421, Leu455, Phe456, Leu455,
Phe456, Tyr473, Tyr489, Pro491, Leu455, Leu455, Phe490, Tyr453,

Leu455 and Tyr449 of S-RBD (Figure 6(B,D). Eight hydrogen
bonds occurred between residues Phe490, Gln493, Gln493,
Gln493, Gln498, Gln498, Gln498 and Gln498 of S-RBD and resi-
dues Trp11, Trp15, Phe14, Phe14, Asn17, Asn17, Tyr19 and Tyr19

of ACE2-Dev-PepIV, respectively (Figure 6(A,B,D)).
Aromatic–aromatic interaction occurred between Phe490of S-
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Figure 4. Energies and interaction between SARS-CoV-2 RBD (yellow) and ACE2-Dev-PepII (green). A and B represent the 3D interactions and 2D interactions,
respectively. C denotes all interactions between SARS-CoV-2 RBD and ACE2-Dev-PepII, and D represents the individual energy contribution of each amino acid resi-
due of ACE2-Dev-PepII.
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RBD and Trp11 residue of ACE2-Dev-PepIV, respectively
(Figure 6(A,D)).

Pro3, Leu6, Leu7, Trp11, Phe14, Asn17 and Leu18 were the
main amino acid residues of ACE2-Dev-PepIV that interacted
with S-RBD, with interaction energies of �8.55, �10.54, �19.27,
�16.08, �10.03, �8.26, �14.77 kcal.mol�1 (Figure 6(C)).

3.7. Quantum biochemistry description

ACE2-Dev-PepI mainly interacted with residues Tyr489, Ala475,
Tyr473, Phe456, Leu455, Asn487 and Lys458 of S-RBD, with inter-
action free energies of �21.54, �8.78, �7.23, �6.27, �3.91,
�3.17 and �2.90 kcal.mol�1, respectively (Figure 7(A)). The
ACE2-Dev-PepII peptide interacted primarily with residues
Arg403, Glu484, Gln493, Leu455, Phe456, Tyr489, Tyr473, Leu492,
Pro491, Asn487, Tyr505, Ala475 and Phe490 94 of S-RBD, with
interaction energies of �12.67, �11.03, �10.64, �10.23,
�9.92, �9.42, �7.04, �5.29, �4.87, �4.42, �4.07, �3.78 and
�3.43 kcal.mol�1, respectively (Figure 7(B)). The ACE2-Dev-
PepIII peptide mainly interacted with the amino acid residues
Lys417, Gln493, Arg408, Leu455, Tyr453, Glu406, Tyr489, Gln409,
Phe456, Tyr505 and Asp405 of the S-RBD, with interaction ener-
gies of �12.13, �10.56, �9.40, �8.79, �6.08, �5.02, �4.85,
�3.92, �3.55, �3.31 and �3.31 kcal.mol�1, respectively
(Figure 7(C)). ACE2-Dev-PepIV mainly interacted with residues
Leu455, Phe456, Gln498, Gln493, Tyr489, Tyr449, Phe490, Ser494,
Pro491, Tyr453, Ala475 and Gly496 of S-RBD, with interaction

energies of �14.65, �13.38, �11.44, �10.72, �10.58, �6.60,
�6.22, �4.19, �4.07, �3.22, �3.14 and �3.12 kcal.mol�1,
respectively (Figure 7(D)).

The ACE2-Dev-PepII and ACE2-Dev-PepIV peptides had the
lowest interaction energy, of �112.8 and �113.9 kcal. mol�1,
respectively, with S-RBD, so they have highest potentials to
inhibit the interaction between S-RBD and ACE2 receptor.
ACE2-Dev-PepI and ACE2-Dev-PepIII presented total interaction
energies, E(t), equal to �64.9 and �84.6 kcal.mol�1, respectively
(Figure 8). Energy convergence was observed in all complexes
formed between ACE2-derived peptides and S-RBD after a dis-
tance greater than 6Å, with minimal variations seen after that
distance (Figure 8).

3.8. ACE2-derived peptides induced wrong interaction
between S-RBD and the ACE2 receptor

All ACE2-derived peptides induced incorrect binding of S-
RBD with the ACE2 receptor. The redocking confirmed the
reliability of the docking tool, since the conformation gener-
ated by the redocking (Figure 9(B)) was similar to the crystal
structure used as control (Figure 9(A)). When S-RBD was
bound to ACE2-Dev-PepI, ACE2-Dev-PepII, ACE2-Dev-PepIII or
ACE2-Dev-PepIV peptides could not recognize the ACE2
receptor in the correct conformation (Figure 9(C–F)). The
ACE2 region that generally interacts with S-RBD was no lon-
ger able to interact in the correct conformation with S-RBD.
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Figure 5. Energies and interaction between SARS-CoV-2 RBD (yellow) and ACE2-Dev-PepIII (black). A and B represent the 3D interactions and 2D interactions,
respectively. C represents the individual energy contribution of each amino acid residue of ACE2-Dev-PepIII, and D denotes all interactions between SARS-CoV-2
RBD and ACE2-Dev-PepIII.
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4. Discussion

The development of vaccines is the most crucial measure to
block SARS-CoV-2 spread and infection. Even though many
research groups worldwide are rushing to develop an effi-
cient vaccine against SARS-CoV-2, an undesirable problem

has arisen. Some studies have shown the immunological
memory mediated by IgGs anti-SARS-CoV-2 is brief, only
around three months. Besides that, there are reports of
patients infected twice by SARS-CoV-2 (Diamond & Pierson,
2020; Tay et al., 2020). This problem related to immunity
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Figure 6. Energies and interaction between SARS-CoV-2 RBD (yellow) and ACE2-Dev-PepIV (blue). A and B represent the 3D interactions and 2D interactions,
respectively. C represents the individual energy contribution of each amino acid residue of ACE2-Dev-PepIV, and D denotes all interactions between SARS-CoV-2
RBD and ACE2-Dev-PepIV.
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offered by the vaccine to SARS-CoV-2 represents a consider-
able challenge to the world population. Therefore, research
for new molecules is imperative to abolish or even attenuate
its symptoms.

One approach to develop therapies quickly is reposition-
ing of already available antiviral drugs to treat SARS-CoV-2
(Yan et al., 2020), which has not been successful so far. The
most employed way to discover possible alternative com-
pounds against SARS-CoV-2 is computational screening
(Diamond & Pierson, 2020; Tay et al., 2020). By employing
computational screening, it is possible to choose as target a
vital protein to SARS-CoV-2 infection, such as RNA polymer-
ase, a main protease and S protein (Elfiky, 2020; Souza et al.,
2020). For instance, Elfiky (Zhang et al., 2020) used molecular
docking to test many conventional antiviral drugs such as
galidesivir, remdesivir and tenofovir against the RNA poly-
merase of SARS-CoV-2. In turn, Wu et al. (2020) performed
molecular docking simulation of drugs such as

antihypertensives, antifungals and anticoagulants against
SARS-CoV-2 targets.

The spike glycoprotein of coronaviruses is an essential
protein to infection. It has two portions, S1 outside the virus
envelope, which is connected to S2, a transmembrane por-
tion attached to the virus envelope. S1 possesses the RBD
domain, which interacts with ACE2. After this interaction, the
S2 portion is responsible for membrane fusion and virus
entry (Hoffmann et al., 2020; Yuan et al., 2017). The S-RBD
domain possesses high mutational rates, characterizing it as
the most variable region of the coronavirus genome (Wu
et al., 2020; Zhou et al., 2020).

In SARS-CoV-like viruses, there are six amino acid residues
critical to the interaction between the RBD domain and the
ACE2 receptor. The mutations accumulated by SARS-CoV-2
lead to five amino acid residues that are different from in to
SARS-CoV. In SARS-CoV, the residues are Tyr455, Leu486,
Asn494, Asp495, Tre501 and Tyr506. In contrast, in SARS-CoV-2,
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the residues are Leu455, Phe486, Glu494, Ser495, Asn501 and
Tyr506 (Andersen et al., 2020; Walls et al., 2020). These differ-
ences in the SARS-CoV-2 RBD domain allow it to bind to
ACE2 with an affinity 20 times higher than SARS-CoV
(Andersen et al., 2020). The ACE2 receptor is expressed in dif-
ferent human tissues, such as kidneys, gut, brain, liver, heart
and lungs. By using it to enter the cells, SARS-CoV-2 can
infect nearly all these tissues, causing SARS-CoV-2 viral sepsis,
meaning the virus can infect several tissues at the same time
(Li et al., 2020).

Given the importance of interaction between S-RBD and
ACE2, several research groups have been seeking molecules
that can block this interaction, either by interaction with S-RBD
or with the ACE2 receptor, (Choudhary et al., 2020; de Oliveira
et al., 2020; Wu et al., 2020). Choudhary et al. (2020) employed
molecular dynamic simulations to find ligand molecules that
interact with the ACE2 receptor and thus block interaction with
SARS-CoV-2 RBD. This can be a two-way road, because by
blocking the ACE2 receptor, SARS-CoV-2 cannot recognize it
and does not establish infection. However, choosing to block
the ACE2 receptor at the same time makes it unavailable to the
cells, and hence produces several collateral effects. In a virtual
screening, Wu et al. (2020) found a flavonoid from citrus fruit,
called hesperidin, which interacted with RBD, blocking its inter-
action with ACE2. However, hesperidin has two highly
undesired side effects: It induces bleeding disorders and low
blood pressure. de Oliveira et al. (2020) tested azithromycin,
hydroxychloroquine and chloroquine by molecular dynamics
against SARS-CoV-2 RBD. These drugs do bind to RBD, but with
low energy.

Here, we employed an in silico approach but with a differ-
ent idea, focused on SARS-CoV-2 spike protein, specifically in
the RBD domain. Instead of looking for molecules to interact
with the ACE2 receptor, we used the sequence of the human
ACE2 receptor to design synthetic peptides derived from it
to target S-RBD. Out of 259 peptides (Supplementary Tables
S1–S3), ACE2-dev-pepI, ACE2-dev-pepII, ACE2-dev-pepIII and
ACE2-dev-pepIV deserved attention.

Molecular docking and dynamic simulations revealed that
all ACE2-derived peptides interacted efficiently with S-RBD
(Table 1, Figures 1–8). This is a pioneer study employing
quantum biochemistry to analyze peptides’ interaction
against SARS-CoV-2 RBD (Supplementary Tables S4–S7).
Quantum biochemistry calculations (Morais et al., 2020)
revealed the individual contribution of each amino acid resi-
due of the ACE2-derived peptides and those of S-RBD.
Therefore, these analyses showed that hydrogen bonds and
ionic, aromatic, cation–pi and hydrophobic interactions are
essential to attractive or repulsive interactions between the
ACE2-derived peptides and S-RBD (Figures 3–7). As shown in
Figure 8, the quantum biochemical calculations taking into
consideration each amino acid energy level showed that the
total interaction energy values between SARS-CoV-2 RBD and
ACE2-dev-pepI, ACE2-dev-pepII, ACE2-dev-pepIII and ACE2-
dev-pepIV were �64.9, �112.8, �84.6 and 1139 kcal.mol�1,
respectively (Figure 8). Further based on the quantum calcu-
lations, ACE2-dev-pepIV was the peptides with the highest

affinity to bind with S-RBD, followed by ACE2-dev-pepII,
ACE2-dev-pepIII and ACE2-dev-pepI.

Since this is the first study to apply quantum biochemistry
calculations to analyze the interactions of peptides with S-
RBD, our results can only be compared with those reported
by Campos et al. (2020), who also investigated the inter-
action of two peptides against the Zika virus protease. By
quantum biochemistry, the authors showed that the inter-
action energies of the peptides cn-716 and acyl-KR-aldehyde
with the protease NS2B–NS3 were �63.35 kcal.mol�1 and
�71.4 kcal.mol�1, respectively. Our peptides interacted with
S-RBD even more strongly than did cn-716 and acyl-KR-alde-
hyde to the protease NS2B–NS3.

Moreover, the effectiveness of other non-peptide-like anti-
viral drugs against S-RBD has been assayed. For example, de
Oliveira et al. (2020) tested by molecular docking the inter-
action of the drugs azithromycin, hydroxychloroquine and
chloroquine, which are used to treat bacterial infection and
malaria, respectively, and study is about drug repositioning
or repurposing, employed to speed up the drug discovery
process by identifying a novel clinical use for an existing
drug approved for a different indication (Yan et al., 2020).
Our results revealed that ACE-derived peptides strongly bind
to S-RBD. However, two questions remain; what are the con-
sequences of that interaction? Can these peptides block or
induce a wrong interaction between S-RBD and ACE2? The
results presented here guide us to answer yes. As presented
in Figure 9, the crystal structure (Figure 9(A)), the redocking
of those structures (Figure 9(B)), and all ACE2-derived peptides
when complexed with S-RBD did not block interaction between
S-RBD and the ACE2 receptor, instead inducing an incorrect
interaction between them (Figure (C–F)). These results strongly
suggest that ACE2-derived peptides are efficient to prevent
SARS-CoV-2 entry in cells, greatly reducing SARS-CoV-2 replica-
tion and avoiding COVID-19 establishment.

As expected, the ACE2-derived peptides presented high
affinity to bind with S-RBD, and the results suggest these
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peptides are efficient to block SARS-CoV-2 infection.
Additionally, for being designed from a human protein, these
peptides will likely cause no serious collateral effects, unlike
other drugs. The in silico analyses revealed these peptides have
no toxic, allergenic or hemolytic potential against humans.
Additionally, stability tests suggested high stability of ACE2-
Dev-pepI, ACE2-Dev-pepII and ACE2-Dev-pepIV in the intestinal
environment indicating possible oral administration.

5. Conclusion

Quantum biochemistry and molecular dynamic simulations
revealed that the ACE2-derived peptides interact physically
with S-RBD, blocking its interaction with the ACE2 receptor
and thus virus entry in the cell. These findings suggest that
ACE2-derived peptides are small antiviral molecules that can
potentially prevent cell invasion by SARS-CoV-2 and thus its
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replication in vivo. However, further investigation is required
to prove this hypothesis. In conclusion, this pioneering in sil-
ico investigation opens an opportunity for further in vivo
investigations of these peptides, aiming to discover new
drugs and entirely new perspectives to treat COVID-19. For
instance, peptide-based therapeutics have various advan-
tages compared to traditional small-molecule drugs, such as
higher specificity to selected targets, low toxicity because
accumulation in the body is improbable, and less complex,
costly and time-consuming synthesis (Yan et al., 2020).
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